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Research Accomplishments

The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes

for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semicon-

ductor amplifiers [ 1]. The code should take into account all relevant processes such as the interband

and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb

interaction among charge carriers [2]. This objective was fully accomplished. We made use of a

previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested

on several problems of practical importance. One such problem was related to the amplification

of femtosecond optical pulses in semiconductors. These results were presented in several interna-

tional conferences over a period of three years.

With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can

lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the oc-

currence of absolute instabilities in lasers that contain a dispersive host material with third-order

nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equa-

tions to distinguish between convective and absolute instabilities. We find that both self-phase

modulation and intensity-dependent absorption can dramatically affect the absolute stability of

such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can oc-

cur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs

in the absence of intensity-dependent absorption. These results were presented in an international

conference and published in the form of two papers.
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Research Project

The Interchange No. NCC2-5149 deals with the emerging technology of photonic (or optoelec-

tronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown

together on the same chip. To build such devices and subsystems, one needs to model the entire

chip. PICs are useful for building components for integrated optical transmitters, integrated optical

receivers, optical data storage systems, optical interconnects, and optical computers. For example,

the current commercial rate for optical data transmission is 2.5 gigabits per second, whereas the

use of shorter pulses to improve optical transmission rates would yield an increase of 400 to 1000

times. The improved optical data transmitters would be used in telecommunications networks and

computer local-area networks. Also, these components can be applied to activities in space, such as

satellite to satellite communications, when the data transmissions are made at optical frequencies.

The research project consisted of developing accurate computer modeling of electromagnetic

wave propagation in semiconductors. Such modeling is necessary for the successful development

of PICs. More specifically, these computer codes would enable the modeling of such devices,

including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which

there is femtosecond pulse propagation. Presently, there are no computer codes that could provide

this modeling. Current codes do not solve the full vector, nonlinear, Maxwell's equations, which

are required for these short pulses and also current codes do not solve the semiconductor Bloch

equations, which are required to accurately describe the material's interaction with femtosecond

pulses. The research performed under NCC2-5149 solves the combined Maxwell's and Bloch's

equations.
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The results obtained during this research were presented in several international conferences and
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An algorithm has been developed thatsolvesthe semiconductor Maxwell-Bloch equations [1],without

making the standard approximations ofa slowly-varyingenvelope (SVEA) and a rotating-wave(RWA). This

more exact formulationisappliedtosimulationsofthe propagationofultrashortpulsesforwhich the standard

approximations reach theirlimits.This development was motivated by the generationof opticalpulses as

short as 8 is,which has become possibledue to recentprogressinultrafasttechnology.

Previously,an algorithm was developed forthe Maxwell equations [2,3],without making the SVEA

forcalculationsofpulsepropagation innonlinearglasses,which exhibitKerr-likeinstantaneousnonlinearities.

It was found that significantdifferencescan occur when the SVEA is not made in Maxwell equations.

Specifically,lightbullets,of 25 fs duration,were found to be stable[4]with the fullMaxwell equations,

whereas previously,calculationswith the nonlinearSchroedingerequation had shown them to be unstable

[5].More recently[6],using the algorithmdeveloped inreferences2 and 3,calculationsshowed the formation

ofshock waves on the opticalcarrierwave. Such resultsare impossiblewith the SVEA sincethe carrierwave

iseliminated from the calculations.

In thispaper, this new algorithm isapplied to studiesof ultrafastopticalpulse propagation in

nonlinearsemiconductor materials,inwhich many-body effectsdue to Coulomb interactionsare included. In

additionto the algorithm forMaxwell's equations,a new algorithmhas been developed forthe semiconductor

Bloch equations that does not make the RWA and the two algorithmshave been combined intoone for the

coupled semiconductor Maxwell-Bloch equations.In the Bloch equationsthe relaxation-timeapproximation

[1] has been made for the various intraband scattering processes.

The Maxwell-Bloch equations for pulse propagation in one spatial dimension are the following.

Assume that the electric field of a pulse that is propagating along the z direction is polarized along the x

axis and ignore the transverse effects, then the Maxwell equations become

ODz OHy OHu _ OE_
Ot - Oz ' po Ot Oz ' D_ = eoerE_ + P_ ,

where Pt is the induced polarization.

In the case of semiconductors, Pr is calculated by using the semiconductor Bloch equations [1], (a

two band model, one conduction band and one valence band).

dt re re dt re r_

dpi,k _ Pl,k + Akpu,k + fl2 twk dp2,t _ P2,k AtPI k -- _l,kwt
dt r_ ' dt r2 '

where n_ and n_ are the occupation probabilities for electron and holes of the wave vector k in the conduction
and valence bands respectively, wk = (n_ +n_-1) is the population inversion, pl,k and p2,k are the dispersive

and absorptive components of the dipole moment Pk, of the wave vector k, pk = pl,k + ip_,k and the r

parameters govern various decay processes. The transition energy hwk is varied over a sufficiently large range
to accurately describe the interaction of an ultrashort optical pulse with the semiconductor, fi_(t) and fi_(t)





aredeterminedbyfirst computing the chemical potentials/Je(t) and/z_(t) from n[(t) and n_(t) respectively

and then using the formula for a Fermi-Dirac distribution to find the quasi-equilibrium Fermi distributions

_(t) and %_(t)
The generalizedRabi frequency_k = _ 1,t+if_,6,theeffectivetransitionenergy hAL, which includes

the hand-gap renormalization,and the induced polarizationP_ are given respectivelyby

_ 2p _0_°f_ = (pE_¢t) + _ Vlk_qlpq), has = h_k - _ l,ik-ql(nq + n_), Px(t) = -_ p,,kk:dlc
q#k q#k

Initially an algorithm was developed for the simpler optical Maxwell-Block equations for two-level

atomic systems [7]. A calculation of self-induced transparency was made for a a 10 fs pulse [8]. Figure 1

shows the electric field of the pulse at several moments during its propagation inside the medium. The top

curve on the right side in figure 2 shows the corresponding population inversion at some location as the pulse

goes by. The top curve on the left side in figure 2 shows the resulting population inversion for self-induced
transparency when the SVEA and the RWA are made. The remaining curves are a comparison of the two
methods when the atomic transition frequency is detuned away from the optical carrier frequency. The exact

method is able to capture the off resonance details that the approximate method is incapable of modeling.

Next the semiconductor Maxwell-Block equations were solved [8] under the simplifications that the

Coulomb interaction terms were neglected (the free carrier assumption) and that there were no relaxation

terms in the equations for the evolution of n[ and n h. Figures 3-6 show colliding pulses, including constructive
and destructive interference. Figure 7 shows gain curves that were obtained under the free carrier assumption.

Finally figure 8 shows exciton results. Notice the ls and 2s absorption peaks in the case of the

2 ps dipole decay time. Here the population inversion was specified at minus one, the generalized Rabi

frequency was used but the transition energy was not renormalized. The presentation shall include additional

calculations of propagating and colliding pulses in which all the Coulomb and relaxation terms are included.

We would like to thank Rolf Binder, Optical Sciences Center, University of Arizona, for his many

helpful comments concerning algorithm development for the semiconductor Bloch equations.
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We investigate analytically the occurrence of modulation instability in doped fiber lasers and amplifiers using
a Maxwell-Bioch description for the dopants and without making the usual parabolic-gain approximation.
We find a new modulation instability occurring near the Rabi frequency, which is not predicted by the conven-
tional complex Ginzburg-Landau model. We discuss the implications of this new instability for fiber ampli-
fiers and lasers and analyze the effects of the saturable host absorption on the laser instabilities. Atomic
detuning is shown to significantly enhance the new modulation instability, in both the normal- and the
anomalous-dispersion regimes. © 1997 Optical Society of America [S0740-3224(97)04610-9]

1. INTRODUCTION

The onset of instabilities in various kinds of lasers is gen-

erally studied by use of a rate-equation model based on

the Maxwell-Bloch equations suitable for a two-level

atomic system. 1 Such a model, often referred to as the

(detuned) Lorenz-Haken model, includes atomic polariza-

tion dynamics and has been used extensively over the

past two decades. Its use leads to the concept of the sec-

ond laser threshold, defined as the pump level at which

the continuous-wave (cw) operation of the laser becomes

unstable through a Hopf bifurcation,resulting in a self-

pulsing output. At higher pump levelsthe laser can en-

ter into a chaotic regime through a period doubling or an-

other route to chaos. 1'2

The advent of fiber lasers during the late 1980's forces

several changes to this standard model of laser instabili-

ties, mainly because the optical fiber, acting as a host to

the dopants, introduces group-velocity dispersion (GVD)

and self-phase modulation (SPM), both of which must be

incorporated for a proper description of the onset of insta-

bilitiesin fiber lasers.3 In fact,these two phenomena

lead to an instability,known as the modulation instability

(MI), even in an undoped and unpumped optical fiber.4

It is therefore reasonable to expect that the presence of

GVD and SPM in the host fiberwould change the nature

of instabilitiesin fiber lasers in comparison with other

kinds of lasers (gas and solid-statelasers) that are well

described by the standard Lorenz-Haken model. Apart

from this propagation-based instability,several other ex-

planations for the observed instabilitiesin rare-earth-

doped fiber lasers have been reported. It was shown

theoretically and experimentally that the existence of ion

clusters in heavily Er-doped fiberlasers leads to single-

mode cw or self-pulsing behavior, whereas the same

model is alsoapplicable to dual-wavelength or bipolarized

lasers.5'6 Other theories and experiments on Er-doped fi-

ber lasers have shown self-pulsing,chaos, and antiphase

dynamics between the different polarization eigenstates

of the optical field.7'8 The explanation for the self-

pulsing behavior of Nd-doped fiber lasers has been re-

ported to be driven by the dynamics of the two field-

polarization eigenstates that depend on the birefringence

of the fiber. 9'l° In this paper, however, we focus on the

propagation-driven MI phenomenon, and do not consider

any field-polarization dynamics.

In recent years, the MI phenomenon has been investi-

gated in doped (active) fibers used to make lasers and

amplifiers. 3,4'1x'12 When doing so, one has to consider the

nonlinear interaction of the dopants with the optical field.

A natural choice is to model the dopants as a two-level

system with an atomic polarization dephasing time T2

and a population relaxation time TI. By far, the most

popular model employs the parabolic-gain approximation,

leading to a complex Ginzburg-Landau (CGL) equation

for the optical field. 3 One study showed that in erbium-

doped fiber amplifiers, 11 the threshold for MI is consider-

ably lowered compared with that for undoped fibers. Re-

cently, Chen et al. 12 included gain dynamics (governed by

T1) as well as a fast saturable absorber in the model and

discussed the implications of MI for passively mode-

locked figure-eight lasers. The full atomic polarization

dynamics (governed by T2) has, however, been neglected

so far.

In this paper we investigate the occurrence of MI be-

yond the Ginzburg-Landau approximation by considering

the full T2 dynamics. We introduce the theoretical

framework in Section 2 and discuss the consequences for

amplifiers in Section 3. There, we calculate the steady-

state solutions and derive a dispersion relation for MI.

The effectof the population relaxation damping time TI

and the dipole dephasing time T2 on MI are studied for

amplifiers. We find that by cooling the fiber amplifier,

the bandwidth and the strength of the MI can be greatly

reduced. In Section 4 we deal with fiber lasers and de-

rive the dispersion relation forMI at resonance. The role

of saturable absorption in fiberlasers is investigated, and

we focus on the possibilityof MI occurring in the normal-

dispersion regime. We find indeed such an instability,

having itsorigin in the atomic coherence effectsrelated to

the atomic polarization dynamics. This new instabilityis

found to occur at rather low frequencies (-50 MHz) and

0740-3224]97/102618-10510.00 © 1997 Optical Society of America
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may explain the self-starting behavior of mode-locked Nd-

doped lasers. In Section 5 we discuss the effects of de-

tuning on the occurrence of MI and discuss the differences

between normal and anomalous operating regimes.

2. THEORETICAL FRAMEWORK

Our starting point is a set of Maxwell-Bloch equations

that describe the propagation of optical fields in a nonlin-

ear, dispersive medium doped with two-level atoms (or

ions). We write the electrical field 2£(x, y, z, t) and the

induced material polarization _(x, y, z, t) as

2_(x, y, z, t) = ½ _F(x, y)A(z, t)

x exp[i(floZ - toot)] + c.c., (1)

J_(x, y, z, t) = ½ _F(x, y)B(z, t)

x exp[i(fl0 z - wot)] + c.c., (2)

where _ is the polarization unit vector of the light as-

sumed to be linearly polarized along the x axis, F(x, y) is

the fiber-mode profile, and flo is the wave number corre-

sponding to the carrier frequency too. We assume that

the field-polarization direction is preserved upon propaga-

tion and that we are dealing with a polarization-

preserving single-mode fiber. However, most of the re-

sults are expected to remain qualitatively valid for

conventional optical fibers. After substituting Eqs. (1)

and (2) into Maxwell's equations, and making the slowly-

varying-envelope and rotating-wave approximations, we

obtain the following equations for the slowly varying com-

plex amplitudes A and B (Ref. 4):

@A i 1 i/32 @2A
- B--aA

@z 2 2 2 @t2

+ (8 + i_,)IAI2A, (3)

dB
T 2 -_- = (i8 - 1)B - iAg, (4)

dg
TI -_ = go - g + Im(A*B)/Put, (5)

where g is the gain realized by pumping the dopants, a is

the optical loss, 32 is the GVD coefficient of the host fiber,

O accounts for saturable host absorption, _f is the fiber

nonlinearity, $ = (_oo - _)T 2 is the scaled detuning be-

tween the carrier frequency too and the atomic resonance

frequency &, go is the unsaturated gain, and Put is the

saturation power for the dopants modeled as a homoge-

neously broadened two-level system. We have written

Eqs. (3)-(5) in such a way thatA has units of _/W, B has

units of _'WL - 1, and g has units of L- 1, where L is the

length of either the amplifier or the laser cavity.

It is important to note that Eqs. (3)-(5) are based on a

traveling-wave description rather than a standing-wave

approach that is employed in the conventional rate-

equation analysis. Since we adopt a traveling-wave ap-

proach, the optical field A(z, t) in Eqs. (3)-(5) in principle

can represent a very wide spectrum (or many longitudinal

modes). The detuning parameter $ is thus interpreted as

the mismatch between the gain peak and the dominant

frequency of the laser spectrum. The main assumptions

in our model are the homogeneously broadened gain me-

dium and the neglect of spontaneous emission. The

former is not valid for all doped fibers, but for some types

of glass hosts it is a reasonable assumption: Since we

are interested in deterministic instabilities, spontaneous

emission can be neglected without loss of generality.

There are two distinct origins of the nonlinear effects in

Eqs. (3)-(5). The fiber nonlinearity _ = n_too/cAef r ac-

counts for SPM effects induced by the host, where n 2 is

the nonlinear refractive index (units m2AV), c is the speed

of light in vacuum, and Ae_ is the effective fibercore area.

For completeness we give the relation between n 2 and the

nonlinear susceptibility _c3J (units of meters squared per

volt squared) of the fiber

3

n 2 -- 4e0n2c Re[_(a_(wo)], (6)

where n is the background refractive index and e 0 is the

permittivity of the vacuum. The dopant-induced nonlin-

ear effects are governed by the saturation power Psat, de-

fined as

2cn _oA_ff

Psat- 2_t2T1T2 , (7)

where ti is Planck's constant divided by 27r and p is the

dipole moment of the atomic transition. Note that Eqs.

(3)-(5) are written in the frame of reference moving with

group velocity vg _-31-1, which means that t = T

- 3_z, where T is the time in the rest frame. By doing

this, we eliminate the term 3_(,_A/aT) from the left-hand

side of Eq. (3).

We now briefly discuss the relation of Eqs. (3)-(5) with

the CGL model: '_2 When the assumption is made that

the population relaxation time T_ is much longer than all

other lifetimes, we can approximate the actual gain g by

its steady-state value g,. This allows Eq. (4) to be ex-

pressed in the Fourier domain as the well-known

Lorentzian-shaped nonlinear susceptibility:

B(Ato) -ig,
(8)

_,(hto) 1 - i(AtoT 2 + $)'

where Ato = to - too is the detuning of the spectral com-

ponent from the carrier frequency. In the CGL model,
polarization equation (8) is approximated by a Taylor ex-

pansion near Ato = 0 up to second order, leading to the

parabolic-gain app_ximation that is reasonably accurate

for small values of T 2 . In the time domain this corre-

sponds to (generally complex) corrections A31 and A32 of

the inverse group velocity 31 and the GVD coefficient 32
(Ref. 3):

1 1

531($)
g2T2 (1 - i$) 2'

(9)

i

532($) = gsT22 (1 - i$)3' (10)

From Eq. (9) we see that only at resonance (di = 0) can

the resulting pulse propagation equation be written in the

reference frame moving with the new group velocity (31
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+ A_I) -I, because only at resonance is the correction

A_l real. ARer writing the correction to the GVD as

A]32(0) = ib _ igsT22, the resulting equations of the

CGL model become

_A 1 1 f?2A

-_z = 2 {g- a)A + _ (b - iB2)_dt 2

+ (8 + iy)lAl_A, (11)

dg g lA Iz

TI _- = go - g Put ' (12)

Obviously, Eqs. (11) and (12) are good approximations of

the full model only if TI is long enough and T2 is short

enough. In this paper we explore the shortcomings of the

CGL model for realistic fiber lasers and amplifiers and

find interesting behavior outside the realm of the CGL

model. We note that the CGL model is only useful for

amplifiers for which gain saturation can be neglected;

otherwise, the gain dispersion b would be z dependent,

which seems impractical at best.

The Maxwell-Bloch equations (3)-(5) can be applied to

both amplifiers and unidirectional (e.g., ring) lasers. In

the case of lasers, however, one should, in general, solve a

complicated boundary-value problem to account for the lo-

calized losses at the cavity mirrors, a task that requires a

numerical approach. In this paper we adopt the mean-

intensity approximation by replacing the localized mirror

losses with a distributed loss incorporated in the total op-

tical loss a. In the case of amplifiers, such a mean-

intensity requirement is not valid: the intensity is

strongly z dependent. Because the steady states are so

different for lasers and amplifiers, a modulation stability

analysis yields very different results. In the following,

we treat them separately.
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This differentialequation can be solved, resulting in

following transcendental equation for PA :

2OP._t(1 + 82)z

C [P._(z) - C.Ptat(1 + 82)]

1-C [PA(__..z)_.'-"C-P_at{l_. + _2)]

+ C_ ln[ Po- C-P_t( 1 + 82) J'

where the coefficients C and C. are given by

(2

l+C÷
C=

C. - C_'

2C± = c2 - i _- [(I - c2)2 - 4(ci - c2)]l_, (I¢.

go ct

el = 20Psat(1 + g2)2' c2 = 20Psat(1 + _2)' (2(

In the absence of saturable absorption ( 0 = 0), the solu

tion of Eq. (17) is implicitly given by

3. MODULATION INSTABILITY IN
AMPLIFIERS

We consider an amplifier (orabsorber) of length L with an

input power P0 at z = 0. We first find the time-

independent (steady-state)solution of Eqs. (3)-(5). For-

mally, itcan be written as

As(z) = [PA(Z)]trZexp[i_s(z)], (13)

As(z)gsiz)

Bs(z) = _ + i ' (14)

[ PA(z) ] -1gs(z) = go 1 + P_t( 1 + /_2) • (15)

Using the imaginary part of Eq. (3), we can write the

phase profile _,(z) in terms of the power profile P_(z):

_s(Z) = y dz'PA(z') + _ de'g,(z'). (16)
1+_ 2

From the real part of Eq. (3), and using Eq. (15), one finds

the following differential equation for the scaled power

profile f(z)=_ PA(Z)/[P_t(1 + /_2)]:

d/" go f
af + 20Psat(1 + 82)f 2. (17)

dz 1 + 82f+ 1

,o= In a(l + $2)

I
X In l ....... [ go ] '

Po - P,t(1 + _2)[___ + $2) 1

(21)

1 + $2)

which, in the absence of optical loss (a = 0), reduces to

ln[PA(z)] PA(z)- Po goz

t--T -oJ + P,., -- 1

After the power profile PA(z) is found, the gain profile

gs(z) and the polarization profile Bs(z) follow from Eqs.

(13)-(16).

To study the onset of MI, we follow a standard

approach 4 by considering the linear stability of the

steady-state (ew) solution given above. Considering

small perturbations u, v, p, q, and x from the cw state
defined as
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Aiz, t) = [(Po) m + uiz, t) + iv(z, t)]

[PA(z)] x/2 ,,

× [--_0 ] exp[i_s(z)j, (23)

gAz)

B(z, t) = _ +-----_[(P0) m + p(z, t) + iq(z, t}]

[PA(z)] xt2

× [--_o ] exp[i_,(z)], (24)

g(z, t) = [go + x(z, t)]I1

PA(Z) ]-1,+ psat(1 + _2)' (25)

and linearizing Eqs. (3)-(5) in u, v, p, q, and x, we solve

the resulting five linear equations in Fourier space by in-

troducing

y = u, v, p, q, x, (26)

where Yo is the initial amplitude, ll is the frequency, and
K(z) is the local wave number of the perturbation. The

resulting dispersion relation for arbitrary detuning _ is

discussed for fiber lasers in Section 5. The dispersion re-

lation at resonance (_ = 0) is given by

{[2iK(z) + g,(z) - 40PA(Z)][2iK(z ) + g,(z)]

+ _22112[fi 2 + sgn(f_2)fi¢2(z)]}(1 - iflT2)

x [(1 - ifiTl)(1 - iIIT2) + l(z)]

- g_(z)[2iK(z) + gs(z)](1 - ifiT2)

× [1 - illT1 - I(z)] - gs(z)

× [2iK(z) + g,(z) - 40PA(Z)]

× [(1 -- ifiT1)(1 - ifiT2) + l(z)]

+ g,2(z)[1 - i[1Tl -

creased, two trends are observed.

First,as c_n be s,._enin Fig. I,

,,inkatleoi'the M[ bandwidth,

I(z) = PA(z)/P_t, sgn(fl_)= ±1, and fle(z)

critical frecue_cy i ., the
h MI isfourd t) oc :_ in the

in a passiv e fi_er ' Before

of Eq. (2_) illV Lr ,us re-

[ p (z)1 ' "'
fiRabi(Z) " [P_tTiT2 ] . (28) (IO)

rhinos the o, dgain

It is useful to define

where

= [4ypA(z)/]f_21] 1/2

maximum frequency for which MI is found to occur in the
is the critical frequency, i.e.,the

case of anomalous dispersion in a passive fiber.4

we examine the implications of Eq. (27) in various re-

gimes of parameter space, we note that the Rabi fre-

quency is somewhat hidden:

The imaginary part of K(z) determines the local gain

experienced by the perturbation.

the totalintegrated gain at frequency fi as 11

(29)h(I2) - -2 dz Im[K(fi, z)],

perturbation grows faster than the steady-state power,

whereas for an absorber it means that the perturbation

dampens less quickly. Dispersion equation (27) reduces

to the previously reported ones in the appropriate limits.

In the absence of saturable host absorption (0 = 0), the

dispersion relation from Ref. 11 is obtained in the limit of

large Tl and short T2.

We now consider the occurrence of MI in various re-

gimes of parameter space for both amplifiers and absorb-

ers. Because our model has no restrictionswith respect

to the magnitude of the lifetimes T l and T2, we can ex-

plore MI in regimes where the CGL model has no validity.

For simplicity, we only consider the local perturbation

gain because the integration in Eq. (29) can be performed

analytically in a few limiting cases only.3 We also ignore

the possibility of saturable host absorption since two-

photon absorption is relativelyweak in silicafibers,and

other sources of saturable nonlinearity are rarely present

in amplifiers. When we discuss MI in lasers, we show

how even relativelysmall amounts of saturable host ab-

sorption can affectthe MI drastically.

We start by investigating the effectof the magnitude of

the dipole lifetime T2. For most fiberamplifiers, T2 is

estimated to be near 100 fs,corresponding to a wide gain

spectrum. Because T I is usually in the range 0.1-10 ms,

the CGL equation isexpected to be a good approximation.

However, by cooling the fiber,the polarization dephasing

process can be slowed down substantially,making values

of T 2 _ 10 ps readily attainable) 3

In Fig. 1 we show for various values of T 2 in the range

0.1-10 ps the MI spectrum for a typical fiber amplifier

with a 30-dB gain, i.e., exp(goL) = 1000. All other pa-

rameters are given in the caption. Note that the satura-

tion power Psat is inversely proportional to T2 [Eq. (7)].

When Eq. (7) is satisfied for each value of T2, the Rabi

frequency remains a constant for all curves: fil_bi

1.29 × 10-3fie. When the dephasing time T 2 is in-

where the factor 2 converts h (fi)to power gain. MI oc-

curs whenever the wave number K has a negative imagi-

nary part. In the case of an amplifier, this means the

First,as can be seen in Fig. I, increasing T 2 leads to a

shrinkage of the MI bandwidth, whereas the maximum

@.0 0.5 1.0 1.5

I'-l_'q uency IfYfi.}

Fig. 1. Modulation instability spectrum for an erbium-doped fi-

ber amplifier at various values of T 2 (indicated in the figure).
Parameters are go= 6.91L -1, Po= lmW, T1 = 0.1 ms, _2

=-20ps2/L, _,=3W-1L -l, and P_t=lmW when T 2
= 0.1 ps. For undoped fibers, MI occurs up to llmt22vr
= 3.9 GHz
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Fig. 2. MI spectrum for the amplifier of Fig. 1, for even longer

dephasing times T2 (indicated in the figure). In the range 21
< T2 < 80 ps, MI is totally quenched. When T2 approaches
100 ps, the MI spectrum starts to show a narrow, weak peak
around the Rabi frequency 12a, bi/ll_ = 0.0013.

gain within the bandwidth decreases rapidly. When T 2

= 100 fs (PA/Psat = 0.01), MI occurs for frequencies up

to fJc/2zr = 3.9 GHz, while the peak MI strength is found

near ft = 1_ c /_-2. The peak strength is very close to the

analytical value 2 YPA, which is found in the CGL limit. 11

Already when T 2 = 2ps (PA/Psa t = 0.2), the frequency

band where MI occurs has shrunk _40_, and near T2

-- 8 ps (Pn/Ps=t = 0.8), MI has almost ceased to occur at

all. Near T2 = 21 ps (Pa/P_a t = 2.1), the MI band van-

ishes completely. Long before that happens, the strength

of MI is so weak that it is doubtful whether it can be ob-

served in a single-pass amplifier.

Second, during this MI spectrum shrinkage, another

phenomenon is occurring that is directly caused by the

two-level system since it involves frequencies close to

_lP_b,, as is shown in Fig. 2. Near the Rabi frequency a

secondary, weak maximum in MI strength begins to form

for T2 > 20 ps. This maximum becomes positive near

T2 = 80 ps (PA/Pfat = 8) and grows with T 2. When T2

is increased further, the MI spectrum slowly returns to its

original width and strength {out of scale in Fig. 2). Near

T2 = 11.5 ns (Pa/Psat = 1150), the MI spectrum shows

again positive MI gain around ilc, while maintaining a

narrow (but weak) peak close to ll_bi. At the highly im-

probable value oft 2 _ 1 #s (Pa/P_t = 105) the MI spec-

trum is very close to the one at T2 = 100 fs, and we have

come full circle.

Thus we find four regimes of T2: in the first regime

(100fs < T 2 < 21ps), increasing T 2 leads to a total

quenching of MI. In the second regime (21 ps < T 2

< 80 ps), no MI occurs, but the gain around the Rabi fre-

quency is growing. In the third regime (80ps < T2

< 11.5 ns), more and more MI occurs around the Rabi

frequency, while the gain around _1 c is growing toward a

positive value again. In the fourth regime, approaching

the long T2 limit (1 #s < T2 < _), the MI spectrum re-

covers fully to its original {small T_) form. The bound-

aries between these regimes are, of course, strongly de-

pendent on the power level PA • For higher power levels

these boundaries rapidly decrease.
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We further note that the MI band near ll_ is insensit_

to changes in T l , as long as it is accompanied by a chan

in the saturation power P_at according to Eq. (7). Ho

ever, if we keep the saturation power constant up

changing TI (this can be done by adjusting the dipole n

ment #), decreasing T 1 leads to a stabilization of t:

lower frequencies and eventually a reduction of MI al_

gether.

We emphasize that the narrow MI peak around l_l_b,

so weak that it is questionable whether it can be observt

in an amplifier. In the case of a laser, however, such

weak gain may build to a substantial instability or,

many round trips, as we discuss in the next sectio

Since it is not common to use an amplifier in the high

saturated regime, the emergence of the narrow MI bar.

near the Rabi frequency is not very practical. Note, hov

ever, that this narrow MI band near the Rabi frequem

does not depend on the sign of/32: in both normal- an

anomalous-dispersion regimes, this instability emerges a

relatively high values of Te.

Apart from this new {and for realistic systems, ex

tremely weak) instability, the full Maxwell-Bloch mode

agrees with the CGL model qualitatively rather well. O

course, the quantitative differences become larger as th,

approximations leading to the CGL model (large T 1 am

short T 2) become more and more inappropriate. In th,
next section we find that for lasers the situation can b_

very different.

4. MODULATION INSTABILITY IN FIBER
LASERS AT RESONANCE

Equations (3)-(5) also describe the optical field and the

gain in a laser, when one assumes that all losses can be

thought of as being distributed along the cavity. Then.

the steady-state solution is characterized by a

z-independent power Po and gain g.,, and can be written

as

As(z) = (P0) l_ exp[i_iz)], (30)

5-i

B.,(z) = 1 + &2 A_g,, (31)

g._ =go 1 + P_t( 1 + 62 ) . (32)

Again, from the real and the imaginary part of Eq. (3), the

following expressions for the laser power Po and the

phase profile _,.Az) are obtained:

g,_ = (a - 20Po)(1 + _2), (33)

d_ l(6g._ )-_- = YPo + _ 1 + /;2 a . (34)

Since Eq. (33) is quadratic in Po {with use of Eq. (32)], in

principle, two values for the laser power are found. One

of these is not physical and corresponds to the antilaser,

which is characterized by a huge gain and almost zero

power.

Similar to the amplifier case, we consider small pertur-
bations u, v, p, q, and x from the cw state, defined as
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A(z, t) = [(Po) m + u(z, t)

+ iv(z, t)]exp[i_ps(z) ], (35)

8-i

B(z, t) = 1 + 82[(P°)ta +p(z' t)

+ iq(z, t)]gsexp[i@s(z)], (36)

[g(z,t)=[go +x(z,t)] 1 + P=t(1 + _2)" , (37)

and linearizing Eqs. (3)-(5) in u, v, p, q, and x, we solve

the resulting five linear equations in the Fourier space by

introducing

y(z, t) = Yo exp[i(Kz - lit)],

y = u, v, p, q, x, (38)

where Y0 denotes the initial amplitude of the perturba-

tion. Note that because because both laser power P0 and

g, are z independent, the wave number K is also z inde-

pendent. At resonance (8 = 0), the resulting dispersion

relation reads

{[2iK + a - 68Po](2iK + a - 20Po)

+ 1322122[fl 2 + sgn(_2)12c2]}(1 - if_T2)

× [(1 - iflT1)(1 - i12T2) + Io]

-gs(2iK + a - 28Po)(1 - i12T2)

× [1 - iflTl - Io] - g,(2iK + a - 60Po)

× [(1 - iflT1)(1 - iflT2) + I0]

+ g,2(1 - iflT1 - Io) = O. (39)

Here, Io = Po/P_t, sgn(_) = ±1, and 12¢

= (4),P0/1_2[) m is the critical frequency, i.e., the maxi-

mum frequency for which MI is found in the case of

anomalous dispersion in a passive fiber. 4 This dispersion

relation is identical to Eq. (27) when one replaces K, P0,

and g, by their z-dependent counterparts, and Eq. (33) is

used.

Dispersion relation (39) reduces to the one previously

reported by Chen et al.,12 who employ the CGL model, in

the appropriate limit.

Before we proceed with examining the implications of

Eq. (39) in various regimes of parameter space, we note

that the Rabi frequency is now given by

( "° ) _fiR.hi m P_-_IT2 (40)

Merely comparing the relative strengths of the critical
frequency 12c with the Rabi frequency 12_bi does not pro-
vide much information about the effect of atomic coher-

ence on MI. The interaction between the fiber nonlinear-

ity, the GVD, and the two-level system is much more
involved,

In contrast with the amplifier case described in the pre-

vious section, lasers generally operate in the heavily satu-

rated regime. This means that the instability near the

Rabi frequency is now more likely to play a significant

.c o.o

_- -o.l

-0.2

,-2 .... i __

41.1 0.0

_./2_ [THz]
0.1

0.2

0.1

0.0

-o.I _ _J /_

-0.2 _ -
-0.7 -0.5 -0.3 -0. I

net MI gain [-2 Im(K)]

Fig. 3. MI analysis for a figure-eight Laser. Solid curves indi-
cate the results of the full model, while dashed curves show those

of the CGL model. Top figure shows the net MI gain spectra,
while the bottom figure shows the corresponding trajectory of the

eigenvalue K on the complex plane. Parameters are a
= 0.4L-l, g0 = 6L -1, /32 = -0.09ps2L -l, _ = 0.1W-1L -t, _,

= 0.008 W -1L -1, T 2 = 1.27 ps, T1 = l0 s ps, and Put = 10
mW.

role. Furthermore, many fiber laser systems, e.g., a

figure-eight laser, contain an effective saturable absorber

that causes mode locking.

We first compare the predictions of Eq. (39) with the

CGL-based expression. 12 To facilitate comparison, we

used the same parameters as in Ref. 12. In Fig. 3 we

show the differences for the case of a figure-eight laser.

Although the trajectories of K in the complex plane as a

function of frequency 12 are quite different for a figure-

eight laser, the resulting net MI gain spectra agree quite

well, at least in the central region. The frequency range

over which positive net MI gain occurs is underestimated

by 10% by the CGL model. Both models show vanishing

gain at 100 kHz [indicated by the vertical line at fl _ 0 in

Fig. 3(a)], whereas the frequency with highest gain is

near 200 kHz. The Rabi frequency in this case is 12R_bi

= 55 MHz, and the_critical frequency is fl c = 37 GHz.

They differ by almost three orders of magnitude. Even

so, MI occurs for frequencies almost twice as large as fl c .

The results for the dye-laser parameters are shown in

Fig. 4. Our model predicts that MI occurs in a narrow

band near 30 GHz, whereas the CGL model predicts no

instability at all! The Rabi frequency 12R_bi and the criti-

cal frequency 12c are both close to 24 GHz, which explains

why the interaction between the fiber and the two-level

system is so highly nonlinear.

Here we find the first meaningful qualitative difference

between the full Maxwell-Bloch model and the CGL

model. Not surprisingly, the laser power in Fig. 4 is _60

times the saturation power P_t, which makes the Rabi

frequency of the same order as the critical frequency ftc.
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So for the dye laser of Fig. 4 the interaction between the

two-level system on the one side and the GVD and the

SPM on the other side cannot be described within a

parabolic-gain approximation.

The pump value go at which the cw state loses its sta-

bility is often classified as the second threshold, 1 as it an-

nounces the onset of unstable behavior. Similarly, we

can identify the MI threshold as the gain above which MI

occurs. At this threshold, MI occurs only at the fre-

quency corresponding to the peak gain in the M! spec-

trum, which can be compared with the frequency with

which perturbations grow at a Hopf bifurcation. In Figs.

5 and 6 we show the dependence of the MI threshold as a

function of 0 for the case of the figure-eight laser (Fig. 5)

and the dye laser (Fig. 6). The effect of saturable absorp-

tion is very dramatic in the case of the figure-eight laser

t_
G

0.005

0.000

.0.005
-0.05 0.05

(a)

0.00

DJ2n [THz]

0.10

0.00

"22 .................. _, t

-0.10
-0.20 -O.15 -O.iO -0.05 0.00 0.05

net MI gain [-2 ImfK)]

Fig. 4. MI analysis for a dye laser. Similar as in Fig. 3, except
for the parameters: a = 0.1 L -1, go = 3 L -1, fl_ = -0.09 ps 2
L -l, 0= O.001W-IL -1, y= 0.008W-lL -l, T2 = 2.45ps, T I

= 103 ps, and Pa_ -*--i roW.
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Fig. 5. MI threshold as a function of saturable absorption 0 for
the fiber laser of Fig. 3.
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Fig. 6. MI threshold as a function of saturable absorption 0 for
the dye laser of Fig. 4.
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Fig.7. Comparison of net MI gain spectra in the absence of

saturableabsorption(0 = 0),forthe casesofnormal and anoma-
lous dispersion. Other parameters of the fiberlaserare the
same as in Fig.3.

parameters: when 0is larger than 10-_W-1L -1. MI oc-

curs immediately after the first (lasing) threshold. A

qualitatively similar dependence is found for the dye la-

ser, where the MI threshold gain decreases from _ 9 to

1.5 at 0 = 0.1. This feature explains why a relatively

weak saturable absorber can lead to passive mode lock-

ing. Although the presence of a saturable absorber is

evidently very useful for the generation of mode-locked

pulses, it somewhat obscures our investigation of the in-

teraction between the two-level system and the fiber non-

linearity and dispersion. This explains why for both the

figure-eight laser and the dye laser of Figs. 3 and 4, the

results hardly change if we consider normal dispersion.

We therefore examine the case 0 = 0, so that we can

consider the sole interaction between the fiber nonlinear-

ity and the two-level system occurring in the absence of

saturable absorption. The interesting question is

whether atomic coherence can lead to MI in the normal-

dispersion regime of the fiber. According to the CGL

model, this is not possible.

In Fig. 7 we show, again for a fiber laser, but without

saturable absorption (ring-cavity instead of figure-eight

| i
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geometry), the net MI gain spectra for 32

= ±0.09 ps 2 L -I. For anomalous dispersion,we find an

approximately 4-GHz-wide MI band centered near 2.5
GHz and a much narrower and much weaker MI band

centered near 50 MHz. While the MI band near 2.5 GHz

vanishes in the case of normal dispersion, the narrow low-

frequency band survives. So, contrary to what the CGL

model predicts,the presence of dopants can cause MI in-

stability in the normal-dispersion regime of the fiber.

Furthermore, in contrast to the amplifier case (Section 2),

any positivevalue of -2 Ira(K) should be taken seriously,

since,in a laser,even the smallest growth of a perturba-

tion may cause a significantchange in the output signal

after many round trips in the cavity.

Figure 8 shows the peculiar dependence of this new MI

at normal dispersion when the population relaxation time

TI is decreased from 10/_s to 1.375/_s. Upon decreasing

T], the new MI band initiallygrows stronger, while shift-

ing to higher frequencies. Decreasing T1 further causes

the band to weaken and finally to vanish abruptly at

-1.35/_s.
We stress that our results indicate that a fiberring la-

ser,operating in the normal-dispersion regime, may show

unstable behavior at high pump levels,even in absence of

additional saturable absorbing mechanisms. At reso-

nance, the strength of the MI in the normal-dispersion re-

gime israther weak, which would imply that the instabil-

ity needs to build up during many round tripsin the ring
laser. In the next section we discuss the effectof detun-

ing on the strength and the nature of thisnew instability.

5. MODULATION INSTABILITY IN
DETUNED FIBER LASERS

With various experimental techniques, e.g.,through the

use of gratings,one can force a fiberlaserto operate away

from the gain peak. In our theory this means that we

have to deal with the effectof detuning b. Recall that

there isno CGL version forthe detuned case,as the group

velocity becomes complex in the parabolic-gain approxi-

mation. For arbitrary detuning, dispersion relation Eq.

(39) reads

|0 T

10"*

IO w

(100)

(_ "q)

I.$75)

I0" ' •o ,. ,._ .,;o _ _o
F_.quemry IMHzl

Fig.8. New MI band atnormal dispersionas a functionofpopu-

lationrelaxationtime T l (indicated).Other parameters ofthe
fiberlaserare the same as thosein Fig.3.

2iK + _2 40P o 2iK +1+ . 1

+ B2112 1 + 82 32f12 + 4_'P° 1 + _2

x {(1 - i12T2}[(1 - iflT])(1 - iflT 2) + loJ

+ 82(1 -lilT1)} + _ 2iK+1+ 1+

x [(1 - i11T1)(1 - illT2}
t

- (1 i'-_i"T2' /fiT])]>]Io + a (1 -

+ _2 2iK + 82 40Po1+ 1+

[ ( il_lT2_2"_-_ -_x (1 - igtT_)(1 - iaT2) + 1 11o

gs2+ g_2(1 - iflT1) + 1 + _----'--_

X [(1 + $2)(1 - if_T1) - lo]

+ 2illT2gs 1 + 82 2iK+ 1 + 82 20Po

[ ,o]x l-illT_ (l+a 2)

(+- 32112
i+_ 2 1+a2/

x [(1 + a2)(1 - iflT 1) - lo]

-k _2 _2 _"_ 2 + 4_/Po1+ 1+8 2

x [(1 + 8_)(1 - iflT1) + (1 - il'lT2)Io] = O, (41)

where lo = Po/Pit. Equation (39) is recovered by put-

ting 8= 0 and g, = a- 281:'o. Equation (41) can be

applied as well for amplifiers by treating Po, g,, and K as

z-dependent quantities.

We now use Eq. _41) to investigate the effect of detun-

ing on the MI spectra shown in Fig. 7. The introduction

of _ into the problem makes the situation even more com-

plex. Instead of only two frequencies, i.e., the critical fre-

quency l'l_and the Rabi frequency l'_Rabi , the problem

now is governed by the interaction of three frequencies.

In Figs. 9 and 10 we show the effectof detuning on the

bandwidth and the strength of MI for normal and anoma-

lous dispersion, respectively. Clearly, small detunings

have a large effecton the occurrence of MI, and the sign of

the detuning also matters. This spectral asymmetry is
due to the fiber host nonlinearities. When GVD and

SPM are absent, Eq. (41) is symmetric in detuning 8. In

the anomalous-dispersion regime (Fig. 10),a small value

of the detuning connects the two MI bands, one owing to
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Fig.10. Similar toFig.9,exceptthatthe lasernow operatesin
the anomalous-dispersion regime.

the passive fiber MI and the other owing to two-level dy-

namics. Upon increasing the absolute value of the de-

tuning, the MI bandwidth and the strength increase loga-

rithmically. At large detuning (8 = 0.1), there is no
distinction between the normal- and anomalous-

dispersion case. For large detuning the instability is ap-
parently dominated by the two-level dynamics.

quite substantial. We show that by cooling the fiberam-

plifierand thereby increasing the dipole dephasing time.

the occurrence of MI can be quenched. For heavily satu-

rated amplifiers, we find a new instability located in a

narrow frequency band around the Rabi frequency. The

CGL model does not predict such an instability. The

strength of this new instability is very small, and it is

questionable that its effectcan be detected in a single-

pass amplifier.

In lasers, a different picture emerges, since any grow-

ing perturbation may build up over many round trips

within the laser cavity. Furthermore, the presence of a

weakly saturable absorbing mechanism is shown to

greatly enhance the instability. We compare our results

with those of Chen et al.,12 who used the CGL model to

investigate MI in a dye laser and a figure-eight laser.12

Our results for the figure-eight laser agree rather well.

whereas we find disagreement for the dye laser,which in

our model ispredicted to have an instabilityof -30 GHz.

Further indication that the CGL model should be used

with caution isgiven when systems without saturable ab-

sorption are studied: for a fiber ring laser operating in

the normal-dispersion regime, a narrow MI band of low

(-50-MHz) frequencies is found, which is not predicted

by the CGL model. This may explain the self-startingof

mode-locked Nd-doped fiberlasers.

The effect of detuning on the strength and the band-

width of the new instabilitycan be substantial, since non-

zero detuning effectivelyintroduces a new frequency into

the problem. Even for a relatively small detuning, the

strength and the bandwidth of MI increase logarithmi-

cally,whereas the differencebetween normal and anoma-

lous dispersion becomes smaller• The fiber nonlineari-

ties cause the MI spectrum to become asymmetric with

respect to detuning.
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6. CONCLUSIONS

We have analyzed the occurrence of modulation instabil-

ity (MI) in fiberlasers and amplifiers by considering the

self-phase modulation, group-velocity dispersion, and the

saturable host absorption. The gain spectrum has been

fullyconsidered, in contrast to the parabolic-gain approxi-

mation employed in the complex Ginzburg-Landau

(CGL) model. We have derived analyticalexpressions for

the MI dispersion K(fl) that naturally reduce to previ-

ously reported research for both lasers and amplifiers.

For amplifiers,operating not too heavily saturated and

in absence of saturable absorption, no qualitative differ-

ences with the CGL description are found, even in re-

gimes where the basic approximations of that model are

violated. Quantitatively, however, the differences can be

REFERENCES

1. C.O. Weiss and R. Vilaseca, Dynamics of Lasers (Wein-
helm, New York, 1991).

2. G.H.M. van Tartwijk and G. P. Agrawal, "Nonlinear dy-
namics in the generalized Lorenz-Haken model," Opt.
Commun. 133, 565-577 (1997).

3. G. P. Agrawal, "Optical pulse propagation in doped fiber
amplifiers," Phys. Rev. A 44, 7493-7501 (1991).

4. G.P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic,
New York, 1995).

5. F. Sanchez and G. Stephan, "General analysis of instabili-
ties in erbium-doped fiber lasers," Phys. Rev. E 53, 2110-
2122 (1996).

6. S. Colin, E. Contesse, P. Le Boudec, G. Stephan, and F.
Sanchez, "Evidence of a saturable-absorption effect in
heavily erbium-doped fibers," Opt. Lett. 21, 1987-1989
(1996).

7. E. Lacot, F. Stoeckel, and M. Chenevier, "Self pulsing,





.
B

G. H. M. van Tartwijk and G. P. Agrawal

chaos and antiphase dynamics in an Er s* doped fiber la-

ser," J. Phys. (France) III 5, 269-279 (1995).

8. Q.L. Williams and R. Roy, "Fast polarization dynamics of

an erbium-dopod fiber ring laser," Opt. Lett. 21, 1478-1480

(1996).
9. S. Bielawski, D. Derozier, and P. Giorieux, "Antiphase dy-

namics and polarization effects in the Nd-doped fiber laser,"

Phys. Rev. A 46, 2811-2822 (1992).

10. H. Zeghlache and A. Boulnois, "Polarization instability in
lasers. I. Model and steady states of neodymium-dopod

fiber lasers," Phys. Rev. A 52, 4229-4242 (1995); UPolariza-

tion instability in lasers: If: Influence of the pump polar-

Vol. 14, No. 10/October 1997/J. Opt. Soc. Am. B 2627

ization on the dynamics," Phys. Rev. A 52, 4243-4254

(1995).
11. G.P. Agrawal, "Modulation instability in erbium-doped fi-

ber amplifiers," IEEE Photonics Technol. Lett. 4, 562-564

(1992).
12. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Self-starting

of passively mode-locked lasers with fast saturable absorb-

ers," Opt. Lett. 20, 350-352 (1995).

13. M. Nakazawa, K. Suzuki, Y. Kimura, and H. Kubota, "Co-

herent _r-pulse propagation with pulse breakup in an

erbium-doped fiber waveguide amplifier," Phys. Rev. A 45,
R2682-R2685 ( 19921.





IEEFJOURNALOFQUANTUMELECTRONICS.VOL 34. NO, 10, OCTOBER 1998 1

Absolute Instabilities in Lasers with

Host-Induced Nonlinearities and Dispersion
Guido H. M. van Tartwijk and Govind P. Agrawal, Fellow. IEEE

Abstract--We analyze the occurrence of absolute instabilities

in lasers that contain a .dispersive host material with third-
order nonlinearities. Starting from the MaxwelI-Bloch equations.,
we derive general multimode equations to distinguish between
convective and absolute instabilities. We find that both serf-phase
modulation and intensity-dependent absorption can dramatically
affect the absolute stability of such lasers. In particular, the self-
pulsing threshold lthe so-called second laser threshold) can occur
at l'e_vtimes the first laser threshold even in good-cavity lasers for
which no self-pulsing occurs in the absence of intensity-dependent
absorption.

Index Terms--Laser stability° nonlinear optics, optical fiber
lasers, optical Kerr effect, optical pulse generation, optical prop-
agation in dispersive media.

l. INTRODUCTION

I_MOST immediately after the advent of the laser, it
was recognized that laser output can become unstable,

rcsulti:ag in irregular power spikes even at a constant pumping
level I IJ. Over the last 30 years or so, laser instabilities

have bccn studied extensively both from the fundamental and

applied viewpoints 121. 13]. The fundamental studies have led
to the flourishing iield of optical chaos. On the applied side,

the development of techniques for controlling chaos are being

used to make lasers tailored for specific applications (high
power, sh_rt pulses, clean far field, etc.).

.'-;incc deterministic chaos is studied in a wide variety of

disciplines, the understanding of laser instabilities can be
improvcd by referring to plasma and fluid instabilities that

have been studicd for a long time. A famous example is
provided by the Lorenz-Haken equations which are named
after the fluid dynamicist Lorenz and the laser theorist Haken

[3]. [4]. In fluid dynamics, instabilities are categorized into
two types: convective and absolute [5]. Convective instabilities

are characterized by the growth of localized perturbations

upon propagation inside a nonlinear medium, while absolute

instabilities exhibit purely temporal dynamics. Absolute laser
instabilities have been studied for more than 30 years. The

Lorcnz-Haken equations describe the dynamics of a homo-

_encously broadened gain medium in a unidirectional ring-
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cavity. Although rarely stated explicitly, the Lorenz-Haken

. equations can only show absolute instabilities. The fundamen-
tal concepts such as second laser threshold, stir-pulsing. Hopf
bifurcation, and different routes to chaos are all formulated

within the context of absolute laser instabilities [3].

In the last 15 years or so, new laser systems have been

designed that are not easily modeled by the Lorenz-Haken
equations. Examples of such lasers are fiber lasers and solid-

state (e.g.. Ti : sapphire) lasers, which are capable of producing

ultrashort optical pulses through passive mode locking while

operating at a constant pump power. What these lasers have in

common is that the gain is provided by atoms or ions doped
inside a host material. As a result, the cavity contains not

only a gain element but also other nonlinear dements, which

are respons_le for nonlinear processes such as self-phase

modulation (SPM) and intensity-dependent absorption (IDA)
[6]. Also, _oup-vdocity dispersion (GVD) of the host medium

plays a nonnegligible role. Because of the dispersive and

nonlinear effects, evolution of the optical field over a single

round trip must be considered, contrary to the Lorenz-Haken

model in which such effects are ignored. This means that the

convective nature of any instability must be considered while
discussing instabilities for such lasers.

A well-kmown example of a convective instability occurs
in nonlinear fiber optics [6]. Optical fibers, without any

gain element and without any longitudinal resonances (no

cavity), show a convective instability known as the modulation
instability. When the power of a CW optical beam becomes

sufficientl.,, large, the combination of SPM and anomalous

GVD causes the CW beam to break up spontaneously into

a pulse tra in (and eventually into optical solitons) whose rep-
etition rat_. depends on the fiber parameters. Mathematically,

a linear stability analysis saX_owsthat perturbations of the form

exp[-i(f_t -Kz)] grow exponentially as exp(gz) with a
growth rate g = -Ira(K) that depends on the frequency

of perturbation. The repetition rate of the resulting pulses

corresponds to the frequency f_ for which the growth rate g
is maximum.

Adding gain to the system., e.g., by doping the fiber with

rare-earth ions and pumping it optically, can affect consider-

ably the c_mditions under which modulation instability arises
[7]. The instability, however, remains convective in nature.

When such a host material (with or without gain) is put into a

cavity, the resulting boundary conditions at the cavity mirrors
can change the nature of the instability from convective to

absolute. Feedback is a necessary ingredient for absolute

instabilities to occur. A well-known example is the Ikeda

0018.-9197/98510.00 @ 1998 IEEE
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instability [8]. which arises when a Kerr medium is placed in
a unidirectional ring cavity. Even without gain and dispersion,

the feedback mechanism provided by the cavity results in an

absolute instability.

In this paper, we discuss under what conditions a convective

instability becomes absolute in a laser. In Section IL we
derive, starting from the Maxwell-Bloch equations, a set of
Lorenz-Haken-type multimode equations capable of describ-

ing the temporal evolution of a laser whose cavity includes

optical elements exhibiting dispersion and nonlinearities. The
usefulness of this new set of equations is illustrated in Section

I11 by considering a relatively simple case of a single-mode
laser. We discuss the stability of that mode as a function of
host nonlinearities.

II. MAXWELL-BLOCH EQUATIONS

For definiteness, we focus on a fiber laser although the

analysis can be applied to any solid-state laser with some
modifications. Our starting point is a set of Maxwell-Bloch

equations describing the propagation of optical fields in an

optical fiber, doped with rare-earth ions. We write the optical
field ,,_ and the dopant-induced polarization _ as

1
,.._(x, y, :, t) = _i:F(a', y)A(z, t) exp[i(Koz- w0t)] + c.c.

(l)
1

75(a', y, z, t) ---;_:F(ar, y)B('., t) exp[i(Koz- wot)] + c.c.

<2)

where .," is the polarization unit vector of light assumed
to be linearlv polarized along the x axis. F(x, y) is the

transverse profile of the fundamental fiber mode. and K0 is
the wavenumber corresponding to the optical frequency wn.

Wc assume that the field-polarization direction is preserved

upon propagation. After substituting (1) and (2) in Maxwell's
equations, modeling dopants as a homogeneously broadened

two-level system, and making use of the slowly varying

envelope and rotating-wave approximations, we obtain the fol-

lowing equations for the slowly varying complex amplitudes
A and B [6]:

OA 1 0,4 i 1 i/_,. 02A
O---f-'- - B- aA + iTIAI_A (3)vg Ot 2 2 2 Of_-

dB (1 - i6)B - iAg (4)
T2 dt -

dg
T1 _- =0c - 9 + Im(A_'B)/P_ (5)

where g is the gain realized by pumping the dopants, a is the
optical loss of the host fiber. Tt is the population lifetime

of the dopants. T_ is the dipole-dephasing time, vg is the
_oup velocity, ft., is the GVD coefficient of the host fiber,

the complex parameter 2" accounts for the host nonlinearities
responsible for SPM and IDA. 6 -- (w0 -wa)T2 is the scaled

detuning between the optical frequency w0 and the atomic
resonance frequency, wa..qc is the unsaturated gain, and P_ is

the saturation power for the dopants. We have written (3)-1"5)
in such n way that A has units of x/-W. B has units of
,v/_ . m -t. and g has units of m-1.

The main assumptions in our model are the use of a

homogeneously broadened gain medium and the neglect of

the stochastic nature of spontaneous emission. The former is

not valid fbr all dopants but is a reasonable assumption for

many types of dopants [6]. The latter can be justified if one is
interested only in deterministic instabilities.

There are two distinct origins of the nonlinear effects in

(3)--(5). The host nonlinearity "y -- 7 _+ i7" accounts for SPM
and IDA effects induced by the silica fiber. The SPM effects

are governed by 7 e = n:a,o/eA_n, where n, is the nonlinear-
index coefficient, c is the speed of light in vacuum, and A_- is

the effective mode area [6]. The effects of IDA are accounted
for by 7"- When 7" > 0, the loss in the cavity increases with

intensity, modeling processes such as two-photon absorption
[6]. In contrast, negative values for 7_' imply a decrease in

cavity losses with increasing intensity and model fast saturable

absorption. The dopant-induced nonlinear effects are governed
by the saturation power P, =_ h2cneoAeff/(2#2TlT2), where

h is Planck's constant divided by 2_', # is the dipole moment

of the atomic transition, and n is the background refractive
index.

The Maxwell-Bloch equations, together with the boundary

conditions imposed by the laser cavity, provide the most

general framework for studying laser instabilities. They are

capable of handing both convective and absolute instabilities
and can show transitions between them. However, their solu-

tions require a numerical approach. Without host nonlinearities

(7 = 0) and without GVD (fl_, = 0), the steady-state solutions
can be obtained, and their linear stability properties have been
studied [9]. However, such an approach is quite cumbersome,

and it is not easy to carry out the analysis after the inclusion

of host nonlinearities and GVD. If one is interested only in

absolute instabilities, an analytic approach can be developed,
as discussed in the next section.

III. MULTIMODE LASER EQUATIONS

Rather than solving (3)--(5) numerically, we make use of

the fact that any cavity supports a set of longitudinal modes

whose field distribution fro(z, t) reproduces itself after each
round trip inside the cavity. These modes can be obtained by

solving (3) with B = 0 (no gain in the fiber cavity) and using

the appropriate boundary .conditions at the cavity mirrors. For
a high-Q laser cavity, one can distribute the mirror losses

throughout the cavity and replace the fiber loss ot in (3) with

otT -- o_ + c_M, where o_M is the distributed mirror loss. The

boundary condition then simply becomes A(L, t) = A(0, t),

where L is the cavity length. For a Fabry-Perot cavity with

mirror reflectivities Rt and 1{2, aM is given by

o_r = _-_ ha . (6)

The approximation that the localized mirror loss can be

replaced by a distributed loss only holds for a high-Q laser

cavity [2].

When dealing with a unidirectional ring laser without host
dispersion and nonlinearities, the form of f,_Iz, t) becomes

simply exp[-iwm(t - z/vg) ], where w,,_ are the mode fre-

quencies and the loss term has been ignored, ha the presence of
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GVD and SPM. fm (z, f) may depend on time in a complicated
manner, but the temporal patterns remain invariant from round

trip to round trip. However. the amplitude of such "temporal
modes" can grow from round trip to round trip if an absolute

instability occurs. It is thus important to consider time scales

describing short-term and long-term dynamics, distinguished
on the basis of the round-trip time T_ = L/v s. The field-

propagation equation (3) describes both the long-term and
short-term effects. By making the coordinate transformation

[1o]

7"= t - _t_'9, T = ztv 9 (7)

we distinguish between the propagation variable 7- describing

evolution over a single round trip. and the long-term timescale
T measured in units of T_. The steady-state solutions of (3)--(5)

are found by putting the derivative with respect to T equal
to zero and applying the boundary conditions at the cavity
mirrors.

In general, a laser can operate in several longitudinal modes
simultaneously. Thus. the laser field can be written as A, (r) =

_--_,,,a,r, fm(r). If this stead.`,' state is perturbed, the expansion

coefficients am become a function of T. We can study the

long-term stability of the steady state by expanding the field

A and the polarization B into a set of longitudinal modes

A(T, r) -- Z a,,_(T)f,,,(r) (8)
fl'l,

B(T, -,-) --- Z b,,_(T)f,_(-,-). (9)
tl'],

When the set of functions {fro{r)} is complete, the modal

expansion in [_) and (9) is exact. However. it is hard to prove
completeness of {fro(r)} under all operating conditions. As

a practical matter, the infinite sum in (8) and (9) is always

truncated. This is justified since only a finite number of

lon.,-itudinal modes are excited in a laser at a given pump

power.
After expansions (8) and (9) are substituted in the

MaxwelI-Bloch equations (3) and (4) using the coordinate
transformation (7). we multiply the equations for am and bm

by f_. and integrate them over one round-trip time T,.. We
then obtain

i 1

rr), I'_

i

ryz r_, it, [p

dbm

* (lO)a m fl nap Cmn pq

(11)

where the coefficients Gr,,q. D,,,q. and C,nnpe are defined as

Gmq -- f, nffq dr (12)

fo r" _ dr (13)
d2 f,_

Dine = dr 2

if"Crnnpe ---- fmf_nfrf_q dr. (14)

The values of these coefficients determine how many modes

should be considered, i.e.. at what point the in.finite sum in (8)
and (9) can be truncated.

The complex gain coefficient g,nq in (1!)is given by

ffgmq = g(T, r)fin(r)j_q (v)dr (15)

and should be intcrprcted as follows. When m --- q, 9,ne

represents the modal gain for the mode f,_=q, while for rn # q

g,nq represents gain modulation because of mode beating
(sometimes referred to as population pulsations). From (5),

wc readily obtain the rate equation for the coef:ficicnts g,nq:

I_pYl

(16)

Note that we have not made any assumptions about the

orthogonal ity of the longitudinal modes. The nonorthogonality
of longitudinal modes has attracted considerable attention

in recent years [11]-[13]. In general, the more "open" a

resonator is (the larger the mirror loss), the less orthogonal the

longitudinal modes are. For fiber lasers, longitudinal modes are
expected to be nearly orthogonal since mirror losses are often

kept to a minimum.
If we assume that the functions {In} are orthonormal, the

coefficients Gmq reduce to 6me. The multimode equations
(10), (11). and (16) thcn transform into the following set of
Lorenz-Haken-type equations:

1 daqdT 2i be 21 i- - '_r"_ - _ _2 Y] ,,,,,D,,,q
Erl

+i3' Z ama*napC'nnPe (17)
I"n, rl, i0

ab, - (1- ig)b - i a.,g.,,o (18)

dg_q
Tx --_ = gc_,_ - g_

i .
(19)

Equations (17)-(19) form a complete set of equations de-

scribing the dynamics of various longitudinal modes of the

laser. They include the effects of host dispersion and nonlin-

earity through the terms containing/_ and 7 in (17). What
constitutes SPM in a propagation-based description now splits
into sevcral different kinds of nonlinearities in the modal

description. The triple sum in (10) describes the phenomenon
of SPM whcn m = n = p = q, cross-phase modulation

for rn = q and n = p, and four-wave mixing for other

combinations of m, n, and p [6].

Equations (17)-(19) constitute the main result of this paper.
In principle, they can be nscd to study the phenomenon

of passive mode locking by including a larger and larger
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nurnbcr of longitudinal modes as the mode-locked pulses
become shorter. When the mode-locked pulse pattern becomes

unstable, the laser may switch to a higher harmonic mode-

locked operation [14] or even enter a chaotic regime [15].

Equations (17)--{19) can be used to describe such behavior.
When the steady-state pattern A, (r) does not vary too rapidly,

one can restrict the analysis to a small number of modes,
although such a restriction will exclude passive mode-locking.

We illustrate the usefulness of (17)-(19) for this case by using

a simple example.

[V. A SII_'LE EXAMPLE

The simplest case. analogous to the single-mode

Lorenz-Haken model, is obtained from (17)-(19) by setting
m = n --- p --- q = 1. The resulting equations become

1 dal i c_r

v a dT -- 2 bl - --_-41 + i:t[al [Zal (20)

dbl - (1 - i6)bl - ialgll (21)
Tn d"_=

d.a_t 1 Im{a_bl) C")T_ _ =.qe -gt, + E ""

where the SPM coefficient is defined as _, = 7G'lnl. The

effect of GVD on a single longitudinal mode merely involves
a frequency shift of magnitude wB --'- ¢3,vaD,t/2. which

has been scaled out of the problem by changing the carrier

f-requcnc 3' we to we -+-WD. This is equivalent to resetting the

atomic detuning by 6 --- 6---wD. We normalize these equations

using the standard Lorenz-Haken notation and rewrite them
in the folloxving way:

dx
-- c:{x - y) _ iqzlx[" (23)

dt

dy --_ _ (l - i6)y--(r - z)x (24)
dt
de

-- b'. -,- Re(x'y) (25)
dt

where the normalized time t --- TIT., is measured in units of

"F_.The parameters o'. b. r. and q. and the variables x, y, and

z are related to quantities appearing in (3)-(5) as

= c, rvgT:/2, b = T_/TI,

r = 90/c_r, q --- _P, Ttvg, (26)

x --v_/P, at, y = (ibt/ar) bv/_,

Z :r -- YIl/aT. (27)

These equations arc identical to the standard Lorenz-Haken
equations [3] except for the last term in (23) that is responsible

for SPM and IDA occurring bccausc of the host nordincaritics

[3].

We now employ the standard linear stability analysis to

investigate the stability properties of (23)-(25). First. we look
for CW solutions of the form

zo(t) --- X exp[-iCAw,t + _s)] (28)

u, (t) = Y exp(-iAw, t) (29)

z, {t) = z, (30)

where P ---X 2 isthe (scaled) optical field intensity,Y is

the (scaled) polarization amplitude, Aws is the frequency, shift

with respect to the optical frequency we. and _, is the phase
lag between electric field and polarization. We stress that all

these quantities are referring to the single longitudinal mode
under consideration.

After substituting (28)-(30) in the evolution equations

(23)-(2.5) and denoting q = qt+ iq", the field intensity
P = X 2 is a positive real solution of the quartic equation

4

E c_P" = 0 (31)
n=fl

where the coefficients are giv_a by

e4= q,,3/a (32)

_ = [a+ 2(I+ =-,)]q,,2._(C/_)lqI" (33)

_._= q"(,_+ a)2/,_ + 2q"(1 t _-*)(,_ + q")
- 2b6q'q"/cr - brq ''2 + b[q[2 (34)

_ = [1+ (C/_)](_ + 1)=+ b6=q"/_
- 2bq"(_ + 1)(, - 1) - 266q' (35)

cc= b6_ - b(r - I)(o"+ I)2. (36)

For each solution P, the accompanying frequency shift

Aw., inversion zj, phase lag _a,, and polarization Y are

determined by the following relations:

6 - q'P
tan _, = Aw, + 6 -- (37)

cr + 1 -- q" P

z, = r - (1 + q_-_-P) (1 + taaa_ _,) (38)

bz_
Y = ---fi- cos _o,. (39)

The presence of SPM affects the CW characteristics of

the laser through the frequency shift Aws. At resonance, i.e.,

6 = 0, the laser operates at the gain peak in the absence of
SPM. In the presence of SPM, this CW state will be detuncd

from the gain peak, thus producing less output power. Thus,
the effects of detuning 6 and the SPM parameter q' either

counteract or re-erfforce each other. In Fig. 1 we show how

the laser power varies with pump at fixed SPM parameter

q' = 1 for three different detunings 6. In general, the detuning
6 increase.', the first laser thresholck but for 6 = 5 and r > 4

the laser output power exceeds that obtained for _ = 0. In Fig.
1, we choose o" -- 3 and b = 1, typical values used in the
context of the Lorenz-Haken model.

The stability of the CW solutions is investigated by per-

forming a linear stability analysis. After writing the perturbed
steady states as

z(t)=[X + u(t)]exp{-i[Aw.t + V_,+ Ca(t)]} (40)

y(t) = [Y + v(t)] exPi--i[Aw, t + @e(t)]} (41)

z(t) ----zs _ to(t) (42)

linearizing the evolution equations for the perturbations
u, v, w, !b (where ¢ is the phase difference _ba - eB), and

assuming a solution of the form exp(st) for u, v, to, _, the

characteristic eigenvalue equation for s is found to be a quartic
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Fig. 1. The laser power F as ,1 function of pmrxp level r in the prescnc© of
SPM (q' = 1 ) for three diffelent VMIles of atomic detuning 6 (indicated in
the figure). Other p,'u,-uneters ,'u'e ¢r = 3 and b ---- 1.

polynomial obtained from the determinant equation as shown

in (43). shown at the bottom of the page. When any of the

four complex roots of (43) has a positive real part, the steady

state under consideration is unstable.

Because of the complexity of the determinant in (43),

we do not attempt to find an analytical expression for the

second threshold, instead, we study two cases in detail. One

is character_ed by the combination o" --- 3 and b = 1,

and is called the "bad-cavity" laser, while the other ("good-

cavity" laser) has the combination o" ----b --- 1. The bad-cavity

laser has a finite second threshold even in the absence of

host nonlinearities, while the good-cavity laser has no second

threshold in the Lorenz-Haken limit obtained by setting q = 0

[3]. For the resonant case (6 --- 0). the second threshold is

simply given by rth.2 ---- or(or -_- b -_- 3)t1(0 " -- b -- l) [3]. A

necessa D, condition, the so-called bad-cavil., condition_ for the

second threshold to exist is o" > b ,--1. An analytical expression

for the second threshold for arbitrary, detuning values was

given in [16].

We first consider a laser without IDA and set q" ---- 0.

SPM is then the only host-induced nonlinearity, in Fig. 2,

we show the pump parameter at the second threshold as a

function of the SPM parameter q' for the bad-cavity laser

operating on-resonance (b --- 0). In absence of SPM (q' = 0),

the second threshold is located at r -- 2]. Quite surprisingly,

the global effect of SPM is to stabilize the system: already at

[7'[ -- 0.04 the second threshold ceases to exist. This result is

surprising since SPM is essential for convective instabilities to

occur in passive fibers and fiber amplifiers. From the steady-

s..-

10 ¸

STABLE

0 , i , i , i

-0.04 _ 0.OO 0.O2 0.04

SPM

Fig. 2. The effect of SPM on the location of the second threshold at atomic
resonance (# = 0), for the "bad-cavity" laser with o" = 3 ,and b --- 1.

ltl00

100

tO

--- po_m_

/I

p_--

i I I i i. II-0._ _ -0.3 --0.2 -4),1 0 0 O.l

IDA
O.2

Fig. 3. The effect of IDA on the location of the second thzeshold at atomic
resonance (# = 0). Solid llne: bad-cavity laser with o" ----1 and b = 1. Dashed
line: good-cavity laser with o" = 3 ,and b = 1.

state analysis above we know that SPM causes a shift in

operating frequency away from the gain peak, thus lowering

the output power. From a stability point of view this shift can

be interpreted as a shift away from the second threshold. The

good-cavity laser (o" = b = 1) shows no second threshold

with or without SPM. --

Quite a different picture emerges when IDA is included.

For both good- and bad-cavity lasers, IDA can reduce the

second threshold dramatically, as shown in Fig. 3. In both

cases, positive values of qU account for two-photon absorption

while negative values of q" can be used to describe the

effect of a fast saturable absorber. Clearly, fast saturable

t s -. o" + 3q"P -_r cos _. 0

-(r - z,) cos 9. s + 1 X cos _,

-Y cos _, -X cos 9. s + b

A_, X
i X +3q'X+(r-'')sing" --(Aw,+6) _rsing, sin_, s+-- Y Y + X Y

_Y sin _,

(r - z,)X sin 9,

XY gm 9,

+ (; cos cp.

=o (43)
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Fig. 4 Thelocationof the secondthresholdfor thebad-cavitylaserof Fig. 3,
as a fimctionof SPM for four different valuesof IDA (indicated in the figure).

absorption (negative q') reduces the second laser threshold

for both good- and bad-cavity lasers. In the presence of a fast

saturable absorber, self-pulsing can therefore occur at pump

levels only a few times above the first threshold. We stress

that this self-pulsing is not related to passive mode locking

because of our assumption of a single longitudinal mode. In

fact. the frequency of self-pulsing is related to the relaxation

oscillations and is a fraction of the longitudinal-mode spacing.
Fig. 4 shows the combined effect of SPM and IDA for the

bad-cavity laser. For four different values of q". the second

laser threshold is shown as a function of the SPM parameter
q'. The effects of SPM and negative IDA have opposite effects

on the second threshold: SPM stabilizes the laser by increasing
the second threshold, while negative IDA destabilizes the laser

and reduces the pumping level at which the second threshold
occurs. For the good-cavity laser, a qualitatively similar figure

is obtained, although in that case no second threshold exists
when q" --- 0.

Fiber ring lasers usually oscillate in many longitudinal
modes simultaneously because their mode spacing (,'-,10 MHz)

is ;t fraction of the gain bandwidth (>1 THz). By using a

grating, they can be forced to operate in a single longitudinal
mode. When we use typical values for a neodymium-doped

fiber laser, o_:r --- 46 km -1, T2 -- 1.75 ps, Tt = 0.1 ms,
7 --- 2.3 W-lka'n -1. and Ps -- 11.4 _uW. the dimensionless

parameters are cr --- 8.84 x 10 -e, b --- 1.77 x 10 -s. and q' =

5.23 x 10 -4. These values make the single-longitudinal-mode

fiber ring laser a good-cavity laser with no second threshold by

itself. Fig. 5 shows the effect of fast saturable absorption on the

second threshold of such a laser. Even relatively small values

of q" cause a second threshold to exist at quite low pump
values. For example, when q" = -3.65 x 10 -s, the second

laser threshold exists at a pump level only twice the first laser

threshold. This value of q" corresponds to Im('y) = 1.6 x 10 -4
W-lkm -l if we use Ctltt ---- 1. This is a weak saturable

absorption indeed, since it only reduces the losses in the cavity

by 0.001% for an intracavity power of 3 W. At the second laser

threshold, the relaxation-oscillation frequency is 50 kHz, and
self-pulsing will occur with a repetition rate close to that value.

I0

3

1 , t
- 10 -8

STABLE

t , t , I i

(10"_ -:IDA

Fig. 5. The location of the secondthresholdfor a fiber ring laser which is
forced to oscillate in only one longitudinal mode. as a function of (negative)
IDA.

V. CONCLUSIONS

In this paper, we have analyzed the effects of GVD and

host nonlinearities (SPM and IDA) on the absolute stability

of lasers. Starting from the Maxwell-Bloch equations, we
derive a set of multimode laser equations, which govern the

absolute dynamics of the laser on a timescale longer than

the cavity round-trip time. The presence of a resonator gives
rise to longitudinal modes that can differ from their conven-

tional form in the presence of GVD and host-nonlinearities.

Our analysis shows the link between the propagation-based

(convective) modulation instability and the purely temporal
(absolute) instabilities of these spatio-temporal patterns. The

latter can occur only in a resonator as absolute instabilities
require optical feedback.

To illustrate our formalism, we consider the case of a fiber

ring laser lorced to oscillate in a single longitudinal mode. The

nonlinear dynamics of the slowly varying amplitude of that

mode is g(_verncd by the Lorenz-Haken equations except that

a nonlinear term is added to the field equation. This nonlinear
term conta ins a complex parameter q whose real and imaginary

parts account for nonlinear effects such as SPM and IDA,
respectively. SPM is found to stabilize the laser, while IDA`

in general, destabilizes the-laser. Thus, we show that SPM can

have a double role as far as stability issues are concerned.

On the one hand, it can cause convective instabilities in

combination with GVD, which can lead to exponential growth

of a localized perturbation. However, once the perturbation

fills the entire cavity, its subsequent growth is dictated by

the cavity modes. SPM is found to suppress such subsequent
growth. IDA induced by fast saturable absorbers, however,

quickly gives rise to a second laser threshold at relatively

low pump levels. In our single-mode laser, the laser begins to

self-pulse at a repetition rate close to the relaxation-oscillation
frequency.
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